Show that the differential equation  is homogeneous and solve

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsShort Answer Type

211. Find a one parameter family of solutions of each of the following differential equation:
y2 + x2 y' = x y y'
74 Views

 Multiple Choice QuestionsLong Answer Type

212. Find a one parameter family of solutions of each of the following differential equation:
(y2 – 2xy) dx = (x2 – 2xy) dy
76 Views

213. Find a one parameter family of solutions of each of the following differential equation:
y2 dx + (x2 – x y + y2) dy = 0
75 Views

214. Find a one parameter family of solutions of each of the following differential equation:
 (x2 + x y) dy = (x2 + y2) dx  
75 Views

Advertisement
215. Solve the following differential equation:
open parentheses 1 plus straight e to the power of straight x over straight y end exponent close parentheses space dx space plus space straight e to the power of straight x over straight y end exponent space open parentheses 1 minus straight x over straight y close parentheses dy space equals space 0.
72 Views

 Multiple Choice QuestionsShort Answer Type

216.

Solve open parentheses straight x space sin space straight y over straight x close parentheses dy space equals open parentheses straight y space sin space straight y over straight x minus straight x close parentheses dx

82 Views

 Multiple Choice QuestionsLong Answer Type

Advertisement

217.

Show that the differential equation straight x space cos space open parentheses straight y over straight x close parentheses dy over dx space equals straight y space cos space open parentheses straight y over straight x close parentheses plus straight x is homogeneous and solve it. 


The given differential equation is
                 space straight x space cos space open parentheses straight y over straight x close parentheses space dy over dx space equals space straight y space cos space open parentheses straight y over straight x close parentheses plus space straight x space space space or space space space space dy over dx space equals fraction numerator straight y space cos space open parentheses begin display style straight y over straight x end style close parentheses plus straight x over denominator straight x space cos space open parentheses begin display style straight y over straight x end style close parentheses end fraction      ...(1)
It is differential equation of the form dy over dx space equals space straight F left parenthesis straight x comma space straight y right parenthesis.
Here,  straight F left parenthesis straight x comma space straight y right parenthesis space equals space fraction numerator straight y space cos space open parentheses begin display style straight y over straight x end style close parentheses plus straight x over denominator straight x space cos space open parentheses begin display style straight y over straight x end style close parentheses end fraction
Replacing x by straight lambda space straight x  and y by λy comma we get
   space straight F left parenthesis λx comma space λy right parenthesis space equals space fraction numerator straight lambda space open square brackets straight y space cos space open parentheses begin display style straight y over straight x end style close parentheses plus straight x close square brackets over denominator straight lambda space open parentheses straight x space cos space begin display style straight y over straight x end style close parentheses end fraction space equals space straight lambda degree space space left square bracket straight F space left parenthesis straight x comma space straight y right parenthesis right square bracket
therefore space space space straight F left parenthesis straight x comma space straight y right parenthesis is a homogeneous function of degree zero. 
therefore space the given differential equation is a homogeneous differential equation
Put y = vx that dy over dx equals straight v plus straight x dv over dx
therefore space space space from space left parenthesis 1 right parenthesis comma space space straight v plus straight x dv over dx space equals space fraction numerator straight v space straight x space cos space open parentheses begin display style vx over straight x end style close parentheses plus straight x over denominator straight x space cos space open parentheses begin display style vx over straight x end style close parentheses end fraction
therefore space space space straight v plus straight x dv over dx space equals space fraction numerator straight v space straight x space cos space straight v space plus space straight x over denominator straight x space cos space straight v end fraction

or     straight v plus straight x dv over dx space equals fraction numerator straight v space cos space straight v plus 1 over denominator cos space straight v end fraction space space or space space straight x dv over dx space equals space fraction numerator straight v space cos space straight v space plus space 1 over denominator cos space straight v end fraction minus straight v

therefore space space space space space space space space straight x dv over dx space equals space fraction numerator straight v space cos space straight v plus 1 minus straight v space cos space straight v over denominator cos space straight v end fraction
therefore space space space space straight x dv over dx equals fraction numerator 1 over denominator cos space straight v end fraction
Separating the variables, we get,
                     cosv space dv space equals space 1 over straight x dx
Integrating,   integral space cos space straight v space dv space equals space integral 1 over straight x dx
therefore                   sin space straight v space equals space log space open vertical bar straight x close vertical bar space plus space log space open vertical bar straight c close vertical bar
or           sin space straight y over straight x space equals space log space open vertical bar straight c space straight x close vertical bar space which space is space required space solution. space

74 Views

Advertisement
218.

Show that the differential equation:
left parenthesis straight x space dy space minus space straight y space dx right parenthesis space straight y space sin space open parentheses straight y over straight x close parentheses space equals space left parenthesis straight y space dx space plus space straight x space dy right parenthesis space straight x space cos space open parentheses straight y over straight x close parentheses 

72 Views

Advertisement

 Multiple Choice QuestionsShort Answer Type

219.

Solve:
straight y space straight e to the power of straight x over straight y end exponent dx space equals open parentheses xe to the power of straight x over straight y end exponent plus straight y squared close parentheses space space dy comma space space space straight y not equal to 0

79 Views

220.

Solve:
straight x dy over dx minus straight y plus straight x space tan straight y over straight x equals 0

73 Views

Advertisement