Solve the following initial value problem: from Mathematics Di

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsLong Answer Type

231.

Solve the following differential equation:
dy over dx equals fraction numerator straight x left parenthesis 2 straight y minus straight x right parenthesis over denominator straight x left parenthesis 2 straight y plus straight x right parenthesis end fraction comma space space if space space straight y space equals space 1 space space when space straight x space equals space 1.

84 Views

Advertisement

232.

Solve the following initial value problem:
dy over dx space equals space fraction numerator straight y left parenthesis straight x plus 2 straight y right parenthesis over denominator straight x left parenthesis 2 straight x plus straight y right parenthesis end fraction. space space space straight y left parenthesis 1 right parenthesis space equals space 2


The given differential equation is
                                     dy over dx space equals space fraction numerator straight y left parenthesis straight x plus 2 straight y right parenthesis over denominator straight x left parenthesis 2 straight x plus straight y right parenthesis end fraction

Put y = vx so that dy over dx space equals space straight v plus straight x dv over dx

therefore space space space space space space space straight v plus straight x dv over dx space equals space fraction numerator vx left parenthesis straight x plus 2 vx right parenthesis over denominator straight x left parenthesis 2 straight x plus vx right parenthesis end fraction

therefore space space space space straight v plus straight x dv over dx space equals space fraction numerator straight v left parenthesis 1 plus 2 straight v right parenthesis over denominator 2 plus straight v end fraction
therefore space space space space space straight x dv over dx space equals space fraction numerator straight v left parenthesis 1 plus 2 straight v right parenthesis over denominator 2 plus straight v end fraction minus straight v space equals space space fraction numerator straight v plus 2 straight v squared minus 2 straight v minus straight v squared over denominator 2 plus straight v end fraction
therefore space space space space space straight x dv over dx space equals space fraction numerator straight v squared minus straight v over denominator straight v plus 2 end fraction
Separating the variables and integrating, we get,
 integral fraction numerator straight v plus 2 over denominator straight v squared minus straight v end fraction dv space equals space integral 1 over straight x dx
therefore space space space integral open square brackets fraction numerator straight v plus 2 over denominator straight v left parenthesis straight v minus 1 right parenthesis end fraction close square brackets dv space equals space integral 1 over straight x dx
therefore space space space space integral open square brackets fraction numerator 0 plus 2 over denominator straight v left parenthesis 0 minus 1 right parenthesis end fraction plus fraction numerator 1 plus 2 over denominator left parenthesis 1 right parenthesis thin space left parenthesis straight v minus 1 right parenthesis end fraction close square brackets dv space equals space integral 1 over straight x dx
therefore space space space minus integral 2 over straight v dv plus integral fraction numerator 3 over denominator straight v minus 1 end fraction dv space equals space integral 1 over straight x dx
therefore space space space minus 2 space logv plus space 3 space log space left parenthesis straight v minus 1 right parenthesis space equals space log space straight x space plus straight c
therefore space space space minus 2 log space straight y over straight x plus 3 space log space open parentheses straight y over straight x minus 1 close parentheses space equals space logx plus space straight c
Now,     straight y left parenthesis 1 right parenthesis space equals space 2 space space space space space space space space rightwards double arrow space space space space straight y space equals space 2 space space space space space space when space space space space straight x space equals space 1
therefore space space space space space space minus 2 space log space 2 over 1 plus 3 space log space open parentheses 2 over 1 minus 1 close parentheses space equals space log space 1 space plus space straight c comma space space space space space space therefore space space space minus 2 space log space 2 space plus space 3 space log space 1 space equals space log space 1 space plus straight c
therefore space space space space minus 2 space log space 2 space plus space 0 space equals space 0 plus space straight c space space space space space space space space space space space rightwards double arrow space space space space straight c space equals space minus 2 space log space 2
therefore space space space solution space is space space minus 2 space log space straight y over straight x plus 3 space log space open parentheses fraction numerator straight y minus straight x over denominator straight x end fraction close parentheses space equals space log space straight x space plus space 2 space log space 2
80 Views

Advertisement

 Multiple Choice QuestionsShort Answer Type

233. Show that the family of curves for which the slope of the tangent at any point (x, y) on it is fraction numerator straight x squared plus straight y squared over denominator 2 xy end fraction comma is given by straight x squared minus straight y squared space equals space straight c space straight x.
76 Views

 Multiple Choice QuestionsMultiple Choice Questions

234. The general solution of the differential equation fraction numerator straight y space dx space minus space straight x space dy over denominator straight y end fraction space equals space 0 is 
  • xy = C

  • x = Cy2 
  • y = Cx
  • y = Cx
78 Views

Advertisement
235.

A homogeneous differential equation of the from  dx over dy space equals space straight h open parentheses straight x over straight y close parentheses can be solved by making the substitution. 

  • y = vx  
  • v = yx
  • x = vy

  • x = vy

71 Views

236. Which of the following is a homogeneous differential equation?
  • (4x + 6y + 5) dy – (3y + 2x + 4) dx = 0

  • (xy) dx – (x3 + y3) dy = 0

  • (x3 + 2 y2) dx + 2xy dy = 0

  • (x3 + 2 y2) dx + 2xy dy = 0

82 Views

 Multiple Choice QuestionsShort Answer Type

237.

Solve :  dy over dx plus straight y space equals space sin space straight x comma space space left parenthesis straight x space element of space straight R right parenthesis

73 Views

 Multiple Choice QuestionsLong Answer Type

238. Solve the differential equation:
straight x dy over dx minus straight y minus 2 straight x cubed space equals space 0.
74 Views

Advertisement
239. Solve the differential equation:
dy over dx minus 2 straight y space equals space 3 straight x.

80 Views

 Multiple Choice QuestionsShort Answer Type

240.

Solve dy over dx plus straight y over straight x space equals space straight e to the power of straight x comma space space left parenthesis straight x greater than 0 right parenthesis.

73 Views

Advertisement