The value of ∫π4π2exlogsinx + cotxdx&nbs

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

Advertisement

641.

The value of π4π2exlogsinx + cotxdx is

  • eπ4log2

  • - eπ4log2

  • 12eπ4log2

  • - 12eπ4log2


C.

12eπ4log2

Let I = π4π2exlogsinx + cotxdx I = π4π2 + π4π2       = π4π2 + - π4π2      = eπ2logsinπ2 - eπ4logsinπ4      = e- π2log12      = 12eπ4log2


Advertisement
642.

Considering four sub-intervals, the value of 0111 +xdx by Trapezoidal rule, is

  • 0.6870

  • 0.6677

  • 0.6977

  • 0.5970


643.

By Simpson's rule, the value of 12dxx dividing the interval (1, 2) into four equal parts, is

  • 0.6932

  • 0.6753

  • 0.6692

  • 7.1324


644.

The value of xsinxsec3xdx is

  • 12sec2x - tanx + c

  • 12xsec2x - tanx + c

  • 12xsec2x + tanx + c

  • 12sec2x + tanx + c


Advertisement
645.

The value of 0xxsin3xdx is

  • 4π3

  • 2π3

  • 0

  • None of these


646.

Which of the following is true ?

  • 01exdx = e

  • 012xdx = log2

  • 01xdx = 23

  • 01xdx = 13


647.

sinlogx + coslogxdx is equal to

  • xcoslogx + c

  • coslogx + c

  • xsinlogx + c

  • sinlogx +c


648.

exx - 1x2dx is equal to

  • exx2 + c

  • - exx2 + c

  • exx + c

  • - exx + c


Advertisement
649.

5101x - 1x - 2dx

  • log2732

  • log3227

  • log89

  • log34


650.

xlogxdx is equal to

  • x242logx - 1 + c

  • x222logx - 1

  • x242logx + 1 + c

  • x222logx + 1


Advertisement