The value of ∫π4π2exlogsinx + cotxdx is
eπ4log2
- eπ4log2
12eπ4log2
- 12eπ4log2
Considering four sub-intervals, the value of ∫0111 + xdx by Trapezoidal rule, is
0.6870
0.6677
0.6977
0.5970
By Simpson's rule, the value of ∫12dxx dividing the interval (1, 2) into four equal parts, is
0.6932
0.6753
0.6692
7.1324
The value of ∫xsinxsec3xdx is
12sec2x - tanx + c
12xsec2x - tanx + c
12xsec2x + tanx + c
12sec2x + tanx + c
B.
∫xsinxsec3xdx = ∫xsinx1cos3xdx∫xtanx . sec2xdx = dtPut tanx = t ⇒ sec2xdx = dtand x = tan-1tThen, it reduces to∫tan-1t . t dt = t22tan-1t -∫t221 + t2dt = xtan2x2 - 12t + 12tan-1t + c= xsec2x - 12 - 12tanx + 12x + c= 12sec2x - tanx + c
The value of ∫0xxsin3xdx is
4π3
2π3
0
None of these
Which of the following is true ?
∫01exdx = e
∫012xdx = log2
∫01xdx = 23
∫01xdx = 13
∫sinlogx + coslogxdx is equal to
xcoslogx + c
coslogx + c
xsinlogx + c
sinlogx + c
∫exx - 1x2dx is equal to
exx2 + c
- exx2 + c
exx + c
- exx + c
∫5101x - 1x - 2dx
log2732
log3227
log89
log34
∫xlogxdx is equal to
x242logx - 1 + c
x222logx - 1
x242logx + 1 + c
x222logx + 1