Which of the following is true ? from Mathematics Integrals

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

641.

The value of π4π2exlogsinx + cotxdx is

  • eπ4log2

  • - eπ4log2

  • 12eπ4log2

  • - 12eπ4log2


642.

Considering four sub-intervals, the value of 0111 +xdx by Trapezoidal rule, is

  • 0.6870

  • 0.6677

  • 0.6977

  • 0.5970


643.

By Simpson's rule, the value of 12dxx dividing the interval (1, 2) into four equal parts, is

  • 0.6932

  • 0.6753

  • 0.6692

  • 7.1324


644.

The value of xsinxsec3xdx is

  • 12sec2x - tanx + c

  • 12xsec2x - tanx + c

  • 12xsec2x + tanx + c

  • 12sec2x + tanx + c


Advertisement
645.

The value of 0xxsin3xdx is

  • 4π3

  • 2π3

  • 0

  • None of these


Advertisement

646.

Which of the following is true ?

  • 01exdx = e

  • 012xdx = log2

  • 01xdx = 23

  • 01xdx = 13


C.

01xdx = 23

a 01exdx = ex01 = e - 1b 012xdx = 2xloge201 = 1log2 . 2 - 20 = 1log2c 01xdx = x323201 = 23d 01xdx = x2201 = 12So, option (c) is correct.


Advertisement
647.

sinlogx + coslogxdx is equal to

  • xcoslogx + c

  • coslogx + c

  • xsinlogx + c

  • sinlogx +c


648.

exx - 1x2dx is equal to

  • exx2 + c

  • - exx2 + c

  • exx + c

  • - exx + c


Advertisement
649.

5101x - 1x - 2dx

  • log2732

  • log3227

  • log89

  • log34


650.

xlogxdx is equal to

  • x242logx - 1 + c

  • x222logx - 1

  • x242logx + 1 + c

  • x222logx + 1


Advertisement