Solve 4 ex tan y dx + 3(1 + ex ) sec2 y dy = 0.  from Mat

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsShort Answer Type

Advertisement

131.  Solve 4 ex tan y dx + 3(1 + e) secy dy = 0. 


The given differential equation is 4 ex tan y dx + 3(1 + ex ) sec2 y dy = 0.
therefore space space 3 space left parenthesis 1 plus straight e to the power of straight x right parenthesis space sec squared straight y space dy space equals negative space 4 space straight e to the power of straight x space tan space straight y space dx
or    fraction numerator sec squared straight y over denominator tan space straight y end fraction dy space equals space minus 4 over 3 fraction numerator straight e to the power of straight x over denominator 1 plus straight e to the power of straight x end fraction dx
therefore space space space space integral fraction numerator sec squared straight y over denominator tan space straight y end fraction dy space equals space minus 4 over 3 integral fraction numerator straight e to the power of straight x over denominator 1 plus straight e to the power of straight x end fraction dx
therefore space space log space open vertical bar tan space straight y close vertical bar space equals negative 4 over 3 space log space left parenthesis 1 plus straight e to the power of straight x right parenthesis space plus space log space straight c
therefore space log space open vertical bar tan space straight y close vertical bar space equals space log space left parenthesis 1 plus straight e to the power of straight x right parenthesis to the power of fraction numerator negative 4 over denominator 3 end fraction end exponent space plus space log space straight c. space space space space space therefore space space space log space open vertical bar tan space straight y close vertical bar space equals space log space fraction numerator straight c over denominator left parenthesis 1 plus straight e to the power of straight x right parenthesis to the power of begin display style 4 over 3 end style end exponent end fraction
therefore space space space space space open vertical bar tan space straight y close vertical bar space equals fraction numerator straight c over denominator left parenthesis 1 plus straight e to the power of straight x right parenthesis to the power of begin display style 4 over 3 end style end exponent end fraction space is space the space required space solution. space
             
75 Views

Advertisement

 Multiple Choice QuestionsLong Answer Type

132.

For the following differential equation, find the general solution:
sec2 x tan y dx – sec2 y tan x dy = 0.

79 Views

 Multiple Choice QuestionsShort Answer Type

133.

For the following differential equation, find the general solution:
sec2 x tan y dx + sec2 y tan x dy = 0.

81 Views

134.

Solve:
3ex tan y dx + (1 – ex) sec2y dy = 0.

111 Views

Advertisement
135.

Solve:
 ex tan y dx + (1 – ex) sec2 y dy = 0.

83 Views

136.

Solve:
tan y dx + sec2 y tan x dy = 0. 

126 Views

137.

Solve:
 left parenthesis 1 plus straight y squared right parenthesis thin space left parenthesis 1 plus log space straight x right parenthesis space dx space plus space straight x space dy space equals space 0

75 Views

138.

Solve:
 left parenthesis 1 plus straight e to the power of 2 straight x end exponent right parenthesis space dy space plus space left parenthesis 1 plus straight y squared right parenthesis space straight e to the power of straight x space dx space equals space 0

90 Views

Advertisement
139.

Solve:
log dy over dx equals ax plus by.
 

78 Views

140.

Solve:
straight x squared left parenthesis straight y minus 1 right parenthesis space dx space plus space straight y squared space left parenthesis straight x minus 1 right parenthesis space dy space equals space 0

 

79 Views

Advertisement