Solve:  from Mathematics Differential Equations

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsShort Answer Type

131.  Solve 4 ex tan y dx + 3(1 + e) secy dy = 0. 
75 Views

 Multiple Choice QuestionsLong Answer Type

132.

For the following differential equation, find the general solution:
sec2 x tan y dx – sec2 y tan x dy = 0.

79 Views

 Multiple Choice QuestionsShort Answer Type

133.

For the following differential equation, find the general solution:
sec2 x tan y dx + sec2 y tan x dy = 0.

81 Views

134.

Solve:
3ex tan y dx + (1 – ex) sec2y dy = 0.

111 Views

Advertisement
135.

Solve:
 ex tan y dx + (1 – ex) sec2 y dy = 0.

83 Views

136.

Solve:
tan y dx + sec2 y tan x dy = 0. 

126 Views

137.

Solve:
 left parenthesis 1 plus straight y squared right parenthesis thin space left parenthesis 1 plus log space straight x right parenthesis space dx space plus space straight x space dy space equals space 0

75 Views

138.

Solve:
 left parenthesis 1 plus straight e to the power of 2 straight x end exponent right parenthesis space dy space plus space left parenthesis 1 plus straight y squared right parenthesis space straight e to the power of straight x space dx space equals space 0

90 Views

Advertisement
139.

Solve:
log dy over dx equals ax plus by.
 

78 Views

Advertisement

140.

Solve:
straight x squared left parenthesis straight y minus 1 right parenthesis space dx space plus space straight y squared space left parenthesis straight x minus 1 right parenthesis space dy space equals space 0

 


The given differential equation is
             straight x squared left parenthesis straight y minus 1 right parenthesis space dx space plus space straight y squared left parenthesis straight x minus 1 right parenthesis space dy space equals space 0 space space or space space straight y squared left parenthesis straight x minus 1 right parenthesis space dy space equals space minus straight x squared left parenthesis straight y minus 1 right parenthesis space dx
or      fraction numerator straight y squared over denominator straight y minus 1 end fraction dy space equals space minus fraction numerator straight x squared over denominator straight x minus 1 end fraction dx
Integrating,   integral fraction numerator straight y squared over denominator straight y minus 1 end fraction dy space equals space minus integral fraction numerator straight x squared over denominator straight x minus 1 end fraction dx
therefore space space space space space integral open parentheses straight y plus 1 plus fraction numerator 1 over denominator straight y minus 1 end fraction close parentheses dy space equals space minus integral open parentheses straight x plus 1 plus fraction numerator 1 over denominator straight x minus 1 end fraction close parentheses dx
therefore space space straight y squared over 2 plus straight y plus log space open vertical bar straight y minus 1 close vertical bar space equals space minus open square brackets straight x squared over 2 plus straight x plus log space open vertical bar straight x plus 1 close vertical bar close square brackets plus straight c
is the required solution. 

79 Views

Advertisement
Advertisement