Solve:  from Mathematics Differential Equations

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsShort Answer Type

131.  Solve 4 ex tan y dx + 3(1 + e) secy dy = 0. 
75 Views

 Multiple Choice QuestionsLong Answer Type

132.

For the following differential equation, find the general solution:
sec2 x tan y dx – sec2 y tan x dy = 0.

79 Views

 Multiple Choice QuestionsShort Answer Type

133.

For the following differential equation, find the general solution:
sec2 x tan y dx + sec2 y tan x dy = 0.

81 Views

134.

Solve:
3ex tan y dx + (1 – ex) sec2y dy = 0.

111 Views

Advertisement
135.

Solve:
 ex tan y dx + (1 – ex) sec2 y dy = 0.

83 Views

136.

Solve:
tan y dx + sec2 y tan x dy = 0. 

126 Views

137.

Solve:
 left parenthesis 1 plus straight y squared right parenthesis thin space left parenthesis 1 plus log space straight x right parenthesis space dx space plus space straight x space dy space equals space 0

75 Views

Advertisement

138.

Solve:
 left parenthesis 1 plus straight e to the power of 2 straight x end exponent right parenthesis space dy space plus space left parenthesis 1 plus straight y squared right parenthesis space straight e to the power of straight x space dx space equals space 0


The given differential equation is
      left parenthesis 1 plus straight e to the power of 2 straight x end exponent right parenthesis space dy space plus space left parenthesis 1 plus straight y squared right parenthesis space straight e to the power of straight x space dx space equals space 0 space space or space space left parenthesis 1 plus straight e to the power of 2 straight x end exponent right parenthesis space dy space equals space minus left parenthesis 1 plus straight y squared right parenthesis space straight e to the power of straight x space dx
Separating the variables, we get,
                 fraction numerator 1 over denominator 1 plus straight y squared end fraction dy space equals space minus fraction numerator straight e to the power of straight x over denominator 1 plus straight e to the power of 2 straight x end exponent end fraction dx
Integrating, integral fraction numerator 1 over denominator 1 plus straight y squared end fraction dy space equals space minus integral fraction numerator straight e to the power of straight x over denominator 1 plus straight e to the power of 2 straight x end exponent end fraction dx             ...(1)
Let          straight I space equals integral fraction numerator straight e to the power of straight x over denominator 1 plus straight e to the power of 2 straight x end exponent end fraction dx

Put straight e to the power of straight x space equals space straight t comma space space space space therefore space space space straight e to the power of straight x dx space equals space dt

therefore space space space space space space space space space straight I space equals space integral fraction numerator 1 over denominator 1 plus straight t squared end fraction dt space space equals space tan to the power of negative 1 end exponent straight t plus straight c subscript 1 space equals space tan to the power of negative 1 end exponent left parenthesis straight e to the power of straight x right parenthesis space plus space straight c subscript 1
therefore space space space space from space left parenthesis 1 right parenthesis comma space space space tan to the power of negative 1 end exponent straight y space equals space minus tan to the power of negative 1 end exponent left parenthesis straight e to the power of straight x right parenthesis space plus space straight c subscript 1
therefore space space space space tan to the power of negative 1 end exponent straight y space plus space tan to the power of negative 1 end exponent left parenthesis straight e to the power of straight x right parenthesis space equals space straight c subscript 1
therefore space space space tan to the power of negative 1 end exponent open parentheses fraction numerator straight y plus straight e to the power of straight x over denominator 1 minus ye to the power of straight x end fraction close parentheses space equals space straight c subscript 1
therefore space space space fraction numerator straight y plus straight e to the power of straight x over denominator 1 minus ye to the power of straight x end fraction space equals space straight c comma space space space where space straight c space equals space tan space straight c subscript 1
This is the required solution. 

90 Views

Advertisement
Advertisement
139.

Solve:
log dy over dx equals ax plus by.
 

78 Views

140.

Solve:
straight x squared left parenthesis straight y minus 1 right parenthesis space dx space plus space straight y squared space left parenthesis straight x minus 1 right parenthesis space dy space equals space 0

 

79 Views

Advertisement