Solve:  from Mathematics Differential Equations

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsShort Answer Type

131.  Solve 4 ex tan y dx + 3(1 + e) secy dy = 0. 
75 Views

 Multiple Choice QuestionsLong Answer Type

132.

For the following differential equation, find the general solution:
sec2 x tan y dx – sec2 y tan x dy = 0.

79 Views

 Multiple Choice QuestionsShort Answer Type

133.

For the following differential equation, find the general solution:
sec2 x tan y dx + sec2 y tan x dy = 0.

81 Views

134.

Solve:
3ex tan y dx + (1 – ex) sec2y dy = 0.

111 Views

Advertisement
135.

Solve:
 ex tan y dx + (1 – ex) sec2 y dy = 0.

83 Views

136.

Solve:
tan y dx + sec2 y tan x dy = 0. 

126 Views

Advertisement

137.

Solve:
 left parenthesis 1 plus straight y squared right parenthesis thin space left parenthesis 1 plus log space straight x right parenthesis space dx space plus space straight x space dy space equals space 0


The given differential equation is
                   left parenthesis 1 plus straight y squared right parenthesis thin space left parenthesis 1 plus log space straight x right parenthesis space dx space plus space straight x space dy space equals space 0 space space or space space straight x space dy space equals space minus left parenthesis 1 plus straight y squared right parenthesis thin space left parenthesis 1 plus space log space straight x right parenthesis space dx
Separating the variables, we get,
               fraction numerator dy over denominator 1 plus straight y squared end fraction space equals negative fraction numerator 1 plus log space straight x over denominator straight x end fraction dx
Integrating,   integral fraction numerator 1 over denominator 1 plus straight y squared end fraction dy space equals space minus integral left parenthesis 1 plus log space straight x right parenthesis. space 1 over straight x dx
therefore space space space tan to the power of negative 1 end exponent straight y space plus straight c space equals space minus fraction numerator left parenthesis 1 plus space log space straight x right parenthesis squared over denominator 2 end fraction space space space space space open square brackets because space space integral open square brackets straight f left parenthesis straight x right parenthesis close square brackets to the power of straight n space straight f apostrophe left parenthesis straight x right parenthesis space dx space equals space fraction numerator straight f to the power of straight n plus 1 end exponent left parenthesis straight x right parenthesis over denominator straight n plus 1 end fraction plus straight c close square brackets
therefore space space space tan to the power of negative 1 end exponent straight y space plus space 1 half left parenthesis 1 plus space log space straight x right parenthesis squared space plus space straight c space equals space 0
which is the required solution. 

75 Views

Advertisement
138.

Solve:
 left parenthesis 1 plus straight e to the power of 2 straight x end exponent right parenthesis space dy space plus space left parenthesis 1 plus straight y squared right parenthesis space straight e to the power of straight x space dx space equals space 0

90 Views

Advertisement
139.

Solve:
log dy over dx equals ax plus by.
 

78 Views

140.

Solve:
straight x squared left parenthesis straight y minus 1 right parenthesis space dx space plus space straight y squared space left parenthesis straight x minus 1 right parenthesis space dy space equals space 0

 

79 Views

Advertisement