Solve: ex tan y dx + (1 – ex) sec2 y dy = 0. from Mathemat

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsShort Answer Type

131.  Solve 4 ex tan y dx + 3(1 + e) secy dy = 0. 
75 Views

 Multiple Choice QuestionsLong Answer Type

132.

For the following differential equation, find the general solution:
sec2 x tan y dx – sec2 y tan x dy = 0.

79 Views

 Multiple Choice QuestionsShort Answer Type

133.

For the following differential equation, find the general solution:
sec2 x tan y dx + sec2 y tan x dy = 0.

81 Views

134.

Solve:
3ex tan y dx + (1 – ex) sec2y dy = 0.

111 Views

Advertisement
Advertisement

135.

Solve:
 ex tan y dx + (1 – ex) sec2 y dy = 0.


The given differential equation is
                           straight e to the power of straight x space tany space dx space plus space left parenthesis 1 minus straight e to the power of straight x right parenthesis space sec squared straight y space dy space equals space 0
or          left parenthesis 1 minus straight e to the power of straight x right parenthesis space sec squared straight y space dy space equals space minus straight e to the power of straight x space tan space straight y space dx space space space or space space space fraction numerator sec squared straight y over denominator tan space straight y end fraction space dy space equals space minus fraction numerator straight e to the power of straight x over denominator 1 minus straight e to the power of straight x end fraction dx
therefore space space space integral fraction numerator sec squared straight y over denominator tan space straight y end fraction dy space equals space integral fraction numerator negative straight e to the power of straight x over denominator 1 minus straight e to the power of straight x end fraction dx
rightwards double arrow space space space space log space left parenthesis tan space straight y right parenthesis space equals space log space left parenthesis 1 minus straight e to the power of straight x right parenthesis space plus space log space straight e
rightwards double arrow space space space space log space left parenthesis tan space straight y right parenthesis space equals space log space left square bracket straight e space left parenthesis 1 minus straight e to the power of straight x right parenthesis right square bracket
therefore space space space space space space space tan space straight y space equals space straight e left parenthesis 1 minus straight e to the power of straight x right parenthesis space is space the space required space solution. space space

83 Views

Advertisement
136.

Solve:
tan y dx + sec2 y tan x dy = 0. 

126 Views

137.

Solve:
 left parenthesis 1 plus straight y squared right parenthesis thin space left parenthesis 1 plus log space straight x right parenthesis space dx space plus space straight x space dy space equals space 0

75 Views

138.

Solve:
 left parenthesis 1 plus straight e to the power of 2 straight x end exponent right parenthesis space dy space plus space left parenthesis 1 plus straight y squared right parenthesis space straight e to the power of straight x space dx space equals space 0

90 Views

Advertisement
139.

Solve:
log dy over dx equals ax plus by.
 

78 Views

140.

Solve:
straight x squared left parenthesis straight y minus 1 right parenthesis space dx space plus space straight y squared space left parenthesis straight x minus 1 right parenthesis space dy space equals space 0

 

79 Views

Advertisement