Solve:  from Mathematics Differential Equations

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsShort Answer Type

141.

Solve:
open parentheses straight e to the power of straight x plus 1 close parentheses space straight y space dy space plus space left parenthesis straight y plus 1 right parenthesis space straight e to the power of straight x space dx space equals space 0


 

87 Views

Advertisement

142.

Solve:
straight y left parenthesis 1 minus straight x squared right parenthesis space dy space plus space straight x space left parenthesis 1 plus straight y squared right parenthesis space dx space equals space 0.



 


The given differential equation is
               straight y left parenthesis 1 minus straight x squared right parenthesis space dy space plus space straight x space left parenthesis 1 plus straight y squared right parenthesis space dx space equals space 0
or          straight y left parenthesis 1 minus straight x squared right parenthesis space dy space equals space minus straight x left parenthesis 1 plus straight y squared right parenthesis space dx
or           fraction numerator straight y over denominator 1 plus straight y squared end fraction dy space equals space minus fraction numerator straight x over denominator 1 minus straight x squared end fraction dx
Integrating,   integral fraction numerator straight y over denominator 1 plus straight y squared end fraction dy equals space space minus integral fraction numerator straight x over denominator 1 minus straight x squared end fraction dx
therefore space space space space integral fraction numerator 2 straight y over denominator 1 plus straight y squared end fraction dy space equals space integral space fraction numerator negative 2 straight x over denominator 1 minus straight x squared end fraction dx
therefore space space log space left parenthesis 1 plus straight y squared right parenthesis space equals space log space open vertical bar 1 minus straight x squared close vertical bar plus straight c
which is required solution. 
83 Views

Advertisement
143.

Solve:
straight y space logydx space minus space straight x space dy space equals space 0



 

91 Views

 Multiple Choice QuestionsLong Answer Type

144.

Show that the general solution of the differential equation dy over dx plus fraction numerator straight y squared plus straight y plus 1 over denominator straight x squared plus straight x plus 1 end fraction space equals 0 is given by (x + y + 1) = A (1 – x – y – 2 x y), where A is parameter.

77 Views

Advertisement

 Multiple Choice QuestionsShort Answer Type

145.

Solve:
dy over dx space equals space fraction numerator straight x left parenthesis 2 space log space straight x space plus space 1 right parenthesis over denominator sin space straight y space plus space straight y space cosy end fraction

80 Views

146.

Solve
dy over dx space equals space fraction numerator xe to the power of straight x logx plus straight e to the power of straight x over denominator straight x space cosy end fraction

83 Views

 Multiple Choice QuestionsLong Answer Type

147.

Solve
dy over dx space equals space sin cubed straight x space cos squared straight x plus straight x space straight e to the power of straight x

82 Views

148.

Solve:
dy over dx space equals space cos cubed straight x space sin to the power of 4 straight x plus straight x square root of 2 straight x plus 1 end root


84 Views

Advertisement
149.

Solve:
dy over dx equals negative straight x space sin squared straight x space space equals space fraction numerator 1 over denominator straight x space log space straight x end fraction



89 Views

150.

Show that the given differential equation is homogeneous and solve it.
(x2 – y2) dx + 2xy dy = 0
given that y = 1 when x = 1.

89 Views

Advertisement