Show that the general solution of the differential equation  i

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsShort Answer Type

141.

Solve:
open parentheses straight e to the power of straight x plus 1 close parentheses space straight y space dy space plus space left parenthesis straight y plus 1 right parenthesis space straight e to the power of straight x space dx space equals space 0


 

87 Views

142.

Solve:
straight y left parenthesis 1 minus straight x squared right parenthesis space dy space plus space straight x space left parenthesis 1 plus straight y squared right parenthesis space dx space equals space 0.



 

83 Views

143.

Solve:
straight y space logydx space minus space straight x space dy space equals space 0



 

91 Views

 Multiple Choice QuestionsLong Answer Type

Advertisement

144.

Show that the general solution of the differential equation dy over dx plus fraction numerator straight y squared plus straight y plus 1 over denominator straight x squared plus straight x plus 1 end fraction space equals 0 is given by (x + y + 1) = A (1 – x – y – 2 x y), where A is parameter.


The given differential equation is
                      dy over dx plus fraction numerator straight y squared plus straight y plus 1 over denominator straight x squared plus straight x plus 1 end fraction space equals space 0 space or space space fraction numerator dy over denominator straight y squared plus straight y plus 1 end fraction plus fraction numerator dx over denominator straight x squared plus straight x plus 1 end fraction space equals space 1
Integrating, we get
                         integral fraction numerator dy over denominator straight y squared plus straight y plus 1 end fraction plus integral fraction numerator dx over denominator straight x squared plus straight x plus 1 end fraction space equals space straight C
rightwards double arrow space space space space space integral space fraction numerator dy over denominator open parentheses straight y plus begin display style 1 half end style close parentheses squared plus open parentheses 1 minus begin display style 1 fourth end style close parentheses end fraction plus integral fraction numerator dx over denominator open parentheses straight x plus begin display style 1 half end style close parentheses squared plus 1 minus begin display style 1 fourth end style end fraction space equals space straight C
rightwards double arrow space space space space integral space fraction numerator dy over denominator open parentheses straight y plus begin display style 1 half end style close parentheses squared plus open parentheses begin display style fraction numerator square root of 3 over denominator 2 end fraction end style close parentheses squared end fraction plus integral fraction numerator dx over denominator open parentheses straight x plus begin display style 1 half end style close parentheses squared plus open parentheses begin display style fraction numerator square root of 3 over denominator 2 end fraction end style close parentheses squared end fraction space equals space straight C
rightwards double arrow space space space space fraction numerator 2 over denominator square root of 3 end fraction tan to the power of negative 1 end exponent open parentheses fraction numerator straight y plus begin display style 1 half end style over denominator begin display style fraction numerator square root of 3 over denominator 2 end fraction end style end fraction close parentheses plus fraction numerator 2 over denominator square root of 3 end fraction tan to the power of negative 1 end exponent open parentheses fraction numerator straight x plus begin display style 1 half end style over denominator begin display style fraction numerator square root of 3 over denominator 2 end fraction end style end fraction close parentheses space equals space straight C
rightwards double arrow space space tan to the power of negative 1 end exponent open parentheses fraction numerator 2 straight y plus 1 over denominator square root of 3 end fraction close parentheses space plus space tan to the power of negative 1 end exponent space open parentheses fraction numerator 2 straight x plus 1 over denominator square root of 3 end fraction close parentheses space equals space fraction numerator square root of 3 straight C over denominator 2 end fraction space equals space straight A subscript 1 space left parenthesis say right parenthesis
Taking tangents on the two sides, we get
                     fraction numerator begin display style fraction numerator 2 straight y plus 1 over denominator square root of 3 end fraction end style plus begin display style fraction numerator 2 straight x plus 1 over denominator square root of 3 end fraction end style over denominator 1 minus open parentheses begin display style fraction numerator 2 straight y plus 1 over denominator square root of 3 end fraction end style close parentheses space open parentheses begin display style fraction numerator 2 straight x plus 1 over denominator square root of 3 end fraction end style close parentheses end fraction space equals space tan space straight A subscript 1 space space rightwards double arrow space space space fraction numerator 2 square root of 3 space left parenthesis straight x plus straight y plus 1 right parenthesis over denominator 3 minus left parenthesis 4 space straight x space straight y space plus 2 straight x plus 2 straight y plus 1 right parenthesis end fraction equals space tan space straight A subscript 1
rightwards double arrow space space space space space space fraction numerator 2 square root of 3 left parenthesis straight x plus straight y plus 1 right parenthesis over denominator 2 left parenthesis 1 minus straight x minus straight y minus 2 xy right parenthesis end fraction space equals space tan space straight A subscript 1
rightwards double arrow space space space space straight x plus straight y plus 1 space equals space fraction numerator 1 over denominator square root of 3 end fraction tan space straight A subscript 1 space left parenthesis 1 minus straight x minus straight y minus 2 xy right parenthesis
rightwards double arrow space space space straight x plus straight y plus 1 space equals space straight A left parenthesis 1 minus straight x minus straight y minus 2 xy right parenthesis comma
             where straight A space equals space fraction numerator 1 over denominator square root of 3 end fraction space space tan space straight A subscript 1 space is space an space arbitrary space constant. space

77 Views

Advertisement
Advertisement

 Multiple Choice QuestionsShort Answer Type

145.

Solve:
dy over dx space equals space fraction numerator straight x left parenthesis 2 space log space straight x space plus space 1 right parenthesis over denominator sin space straight y space plus space straight y space cosy end fraction

80 Views

146.

Solve
dy over dx space equals space fraction numerator xe to the power of straight x logx plus straight e to the power of straight x over denominator straight x space cosy end fraction

83 Views

 Multiple Choice QuestionsLong Answer Type

147.

Solve
dy over dx space equals space sin cubed straight x space cos squared straight x plus straight x space straight e to the power of straight x

82 Views

148.

Solve:
dy over dx space equals space cos cubed straight x space sin to the power of 4 straight x plus straight x square root of 2 straight x plus 1 end root


84 Views

Advertisement
149.

Solve:
dy over dx equals negative straight x space sin squared straight x space space equals space fraction numerator 1 over denominator straight x space log space straight x end fraction



89 Views

150.

Show that the given differential equation is homogeneous and solve it.
(x2 – y2) dx + 2xy dy = 0
given that y = 1 when x = 1.

89 Views

Advertisement