Solve from Mathematics Differential Equations

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsShort Answer Type

141.

Solve:
open parentheses straight e to the power of straight x plus 1 close parentheses space straight y space dy space plus space left parenthesis straight y plus 1 right parenthesis space straight e to the power of straight x space dx space equals space 0


 

87 Views

142.

Solve:
straight y left parenthesis 1 minus straight x squared right parenthesis space dy space plus space straight x space left parenthesis 1 plus straight y squared right parenthesis space dx space equals space 0.



 

83 Views

143.

Solve:
straight y space logydx space minus space straight x space dy space equals space 0



 

91 Views

 Multiple Choice QuestionsLong Answer Type

144.

Show that the general solution of the differential equation dy over dx plus fraction numerator straight y squared plus straight y plus 1 over denominator straight x squared plus straight x plus 1 end fraction space equals 0 is given by (x + y + 1) = A (1 – x – y – 2 x y), where A is parameter.

77 Views

Advertisement

 Multiple Choice QuestionsShort Answer Type

145.

Solve:
dy over dx space equals space fraction numerator straight x left parenthesis 2 space log space straight x space plus space 1 right parenthesis over denominator sin space straight y space plus space straight y space cosy end fraction

80 Views

146.

Solve
dy over dx space equals space fraction numerator xe to the power of straight x logx plus straight e to the power of straight x over denominator straight x space cosy end fraction

83 Views

 Multiple Choice QuestionsLong Answer Type

Advertisement

147.

Solve
dy over dx space equals space sin cubed straight x space cos squared straight x plus straight x space straight e to the power of straight x


The given differential equation is
              dy over dx space equals space sin cubed straight x space cos squared straight x plus straight x space straight e to the power of straight x
Separting the variables, we get,   dy space equals space left parenthesis sin cubed straight x space cos squared straight x plus straight x space straight e to the power of straight x right parenthesis space dx
therefore space space space space integral dy space equals space integral left parenthesis sin cubed straight x space cos squared straight x plus straight x space straight e to the power of straight x right parenthesis space dx
therefore space space integral dy space equals space integral sin cubed straight x space cos squared straight x space dx space plus space integral straight x space straight e to the power of straight x space dx space space space space space space... space left parenthesis 1 right parenthesis
Let   straight I subscript 1 space equals space integral sin cubed straight x space space cos squared straight x space dx space equals space integral sin squared straight x space cos squared straight x. space sinx space dx
            equals space integral left parenthesis 1 minus cos squared straight x right parenthesis space cos squared straight x. space sinx space dx
Put cosx =t,     therefore space space space space sin space straight x space dx space equals space minus dt
therefore space space space straight I subscript 1 space equals space minus integral left parenthesis 1 minus straight t squared right parenthesis space straight t squared space dt space equals space minus integral left parenthesis straight t squared minus straight t to the power of 4 right parenthesis space dt space equals space minus open parentheses straight t cubed over 3 minus straight t to the power of 5 over 5 close parentheses equals 1 fifth straight t to the power of 5 minus 1 third straight t cubed
             equals space 1 fifth cos to the power of 5 straight x space minus space 1 third cos cubed straight x

Let   straight I subscript 2 space equals space integral straight x space straight e to the power of straight x space dx space equals space straight x space. straight e to the power of straight x space minus space integral 1. space straight e to the power of straight x space dx space equals space straight x space straight e to the power of straight x space minus space straight e to the power of straight x space equals space left parenthesis straight x minus 1 right parenthesis space straight e to the power of straight x
therefore space space space from space left parenthesis 1 right parenthesis comma space space integral dy space equals space 1 fifth cos to the power of 5 straight x minus 1 third cos cubed straight x plus left parenthesis straight x minus 1 right parenthesis space straight e to the power of straight x
therefore space space space straight y space equals space 1 fifth cos to the power of 5 straight x space minus space 1 third cos cubed straight x space plus space left parenthesis straight x minus 1 right parenthesis space straight e to the power of straight x plus straight c space is space the space required space solution. space      

82 Views

Advertisement
148.

Solve:
dy over dx space equals space cos cubed straight x space sin to the power of 4 straight x plus straight x square root of 2 straight x plus 1 end root


84 Views

Advertisement
149.

Solve:
dy over dx equals negative straight x space sin squared straight x space space equals space fraction numerator 1 over denominator straight x space log space straight x end fraction



89 Views

150.

Show that the given differential equation is homogeneous and solve it.
(x2 – y2) dx + 2xy dy = 0
given that y = 1 when x = 1.

89 Views

Advertisement