Solve from Mathematics Differential Equations

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsShort Answer Type

141.

Solve:
open parentheses straight e to the power of straight x plus 1 close parentheses space straight y space dy space plus space left parenthesis straight y plus 1 right parenthesis space straight e to the power of straight x space dx space equals space 0


 

87 Views

142.

Solve:
straight y left parenthesis 1 minus straight x squared right parenthesis space dy space plus space straight x space left parenthesis 1 plus straight y squared right parenthesis space dx space equals space 0.



 

83 Views

143.

Solve:
straight y space logydx space minus space straight x space dy space equals space 0



 

91 Views

 Multiple Choice QuestionsLong Answer Type

144.

Show that the general solution of the differential equation dy over dx plus fraction numerator straight y squared plus straight y plus 1 over denominator straight x squared plus straight x plus 1 end fraction space equals 0 is given by (x + y + 1) = A (1 – x – y – 2 x y), where A is parameter.

77 Views

Advertisement

 Multiple Choice QuestionsShort Answer Type

145.

Solve:
dy over dx space equals space fraction numerator straight x left parenthesis 2 space log space straight x space plus space 1 right parenthesis over denominator sin space straight y space plus space straight y space cosy end fraction

80 Views

Advertisement

146.

Solve
dy over dx space equals space fraction numerator xe to the power of straight x logx plus straight e to the power of straight x over denominator straight x space cosy end fraction


The given differential equation is dy over dx equals fraction numerator xe to the power of straight x logx plus straight e to the power of straight x over denominator straight x space cosy end fraction
Separating the variables, we get,
            cosy space dy space equals space fraction numerator xe to the power of straight x logx plus straight e to the power of straight x over denominator straight x end fraction dx space space or space space cosy space dy space equals space straight e to the power of straight x open parentheses fraction numerator straight x space logx space plus space 1 over denominator straight x end fraction close parentheses dx
or     cosy space dy space equals space straight e to the power of straight x open parentheses logx plus 1 over straight x close parentheses dx space space space rightwards double arrow space space integral space cosy space dy space equals space integral straight e to the power of straight x open parentheses logx plus 1 over straight x close parentheses dx
therefore space space space sin space straight y space equals space straight e to the power of straight x space logx space plus space straight c space space space space space space space space space open square brackets because space space integral straight e to the power of straight x open curly brackets straight f left parenthesis straight x right parenthesis plus straight f apostrophe left parenthesis straight x right parenthesis close curly brackets dx space equals space straight e to the power of straight x space straight f left parenthesis straight x right parenthesis space plus space straight c close square brackets
which is required solution. 

83 Views

Advertisement

 Multiple Choice QuestionsLong Answer Type

147.

Solve
dy over dx space equals space sin cubed straight x space cos squared straight x plus straight x space straight e to the power of straight x

82 Views

148.

Solve:
dy over dx space equals space cos cubed straight x space sin to the power of 4 straight x plus straight x square root of 2 straight x plus 1 end root


84 Views

Advertisement
149.

Solve:
dy over dx equals negative straight x space sin squared straight x space space equals space fraction numerator 1 over denominator straight x space log space straight x end fraction



89 Views

150.

Show that the given differential equation is homogeneous and solve it.
(x2 – y2) dx + 2xy dy = 0
given that y = 1 when x = 1.

89 Views

Advertisement