Let f : R → R be a differentiable function and f(1) = 4

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

Advertisement

501.

Let f : R  R be a differentiable function and f(1) = 4. Then the value of limx14fx2tx - 1dt, if f'(1) = 2 is :

  • 16

  • 8

  • 4

  • 2


A.

16

limx14fx2tdtx - 1     = limx12fx . f'x1     = 2f1 . f'1 = 2 . 4 . 2 = 16


Advertisement
502.

The solution of dydx + y tan(x) = sec(x) is :

  • ysecx = tanx + c

  • ytanx = secx + c

  • tanx = ytanx + c

  • xsecx = tany + c


503.

The solution of dydx = ax + hby + k represents a parabola, when :

  • a = 0, b = 0

  • a = 1, b = 2

  • a = 0, b  0

  • a = 2, b = 1


504.

An integrating factor of the differential equation xdydx + ylogx = xexx12logx, (x > 0) is :

  • xlog(x)

  • xlogx

  • elogx2

  • ex2


Advertisement
505.

The solution of edydx = x + 1, y(0) = 3 is :

  • y = xlog(x) - x + 2

  • y = (x + 1)logx + 1 - x + 3

  • y = x + 1logx + 1 + x + 3

  • y = xlogx + x + 3


506.

Solution of the differential equation dydxtany = sinx + y + sinx - y is :

  • secy + 2cosx = c

  • secy - 2cosx = c

  • cosy - 2sinx = c

  • tany - 2secy = c


507.

Solution of the differential equation dydx + yx = sinx is :

  • xy + cosx = sinx + c

  • xy - cosx = sinx + c

  • xycosx = sinx + c

  • xy - cosx = cosx + c


508.

The solution of the differential equation xdydx + 2y = x2 is :

  • y = x2 + c4x2

  • y = x24 + c

  • y = x2 + cx2

  • y = x4 + c4x2


Advertisement
509.

y = - A cos(5x) + B sin(5x) satisfies the differential equation :

  • d2ydx2 + 10dydx + 25y = 0

  • d2ydx2 - 10dydx + 25y = 0

  • d2ydx2 - 25y = 0

  • d2ydx2 + 25y = 0


510.

The order and degree of the differential equation sinxdx + dy = cosxdx - dy is :

  • (1, 2)

  • (2, 2)

  • (1, 1)

  • (2, 1)


Advertisement